Introduction to Python NumPy Arrays#

What is NumPy?#

  • NumPy is short for “Numerical Python” and it is a fundamental python package for scientific computing.

  • It uses a high-performance data structure known as the n-dimensional array or ndarray, a multi-dimensional array object, for efficient computation of arrays and matrices.

What is an Array?#

  • Python arrays are data structures that store data similar to a list, except the type of objects stored in them is constrained.

  • Elements of an array are all of the same type and indexed by a tuple of positive integers.

  • The python module array allows you to specify the type of array at object creation time by using a type code, which is a single character. You can read more about each type code here:

import array
array_one = array.array('i',[1,2,3,4])

What is a NumPy N-Dimensional Array (ndarray)?#

  • It is an efficient multidimensional array providing fast array-oriented arithmetic operations.

  • An ndarray as any other array, it is a container for homogeneous data (Elements of the same type)

  • In NumPy, data in an ndarray is simply referred to as an array.

  • As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or slicing operations.

  • For numerical data, NumPy arrays are more efficient for storing and manipulating data than the other built-in Python data structures.

import numpy as np
list_one = [1,2,3,4,5]
numpy_array = np.array(list_one)

Advantages of NumPy Arrays#

Vectorized Operations#

  • The key difference between an array and a list is, arrays are designed to handle vectorized operations while a python list is not.

  • NumPy operations perform complex computations on entire arrays without the need for Python for loops.

  • In other words, if you apply a function to an array, it is performed on every item in the array, rather than on the whole array object.

  • In a python list, you will have to perform a loop over the elements of the list.

list_two = [1,2,3,4,5]
# The following will throw an error:
list_two + 2
  • Performing a loop to add 2 to every integer in the list

for index, item in enumerate(list_two):
    list_two[index] = item + 2
  • With a NumPy array, you can do the same simply by doing the following:

numpy_array + 2
  • Any arithmetic operations between equal-size arrays applies the operation element-wise:

numpy_array_one = np.array([1,2])
numpy_array_two = np.array([4,6])
numpy_array_one + numpy_array_two
numpy_array_one > numpy_array_two


  • NumPy internally stores data in a contiguous block of memory, independent of other built-in Python objects.

  • NumPy arrays takes significantly less amount of memory as compared to python lists.

import numpy as np
import sys
python_list = [1,2,3,4,5,6]
python_list_size = sys.getsizeof(1) * len(python_list)
python_numpy_array = np.array([1,2,3,4,5,6])
python_numpy_array_size = python_numpy_array.itemsize * python_numpy_array.size

Basic Indexing and Slicing#

One Dimensional Array#

  • When it comes down to slicing and indexing, one-dimensional arrays are the same as python lists

  • You can slice the array and pass it to a variable. Remember that variables just reference objects.

  • Any change that you make to the array slice, it will be technnically done on the original array object. Once again, variables just reference objects.

numpy_array_slice = numpy_array[1:4]
numpy_array_slice[1] = 10

Two-Dimensional Array#

  • In a two-dimensional array, elements of the array are one-dimensional arrays

numpy_two_dimensional_array = np.array([[1,2,3],[4,5,6],[7,8,9]])
  • Instead of looping to the one-dimensional arrays to access specific elements, you can just pass a second index value

  • Slicing two-dimensional arrays is a little different than one-dimensional ones.